

1. CT技術のCutting edge — Photon-counting CTとdual energy CTを中心に

1) 循環器領域におけるディープラーニングを応用した 最新技術の可能性

沙記 キャノンメディカルシステムズ (株) 国内営業本部 CT 営業部

心臓CT検査は、64列CT装置が登場 して以降、虚血性心疾患の診断ツールと して広く臨床現場に普及しており、冠動 脈疾患の存在と重症度診断における有用 性が示されている¹⁾。当社は2007年, 当 時最多列であった64列CT装置の5倍の 撮影幅を有する 320 列 Area Detector CT (ADCT) 「Aquilion ONE」を開発した。 Aguilion ONEにより、寝台移動すること なく「1心拍」「1回転」で心臓全体の撮影 が可能となった。本稿では、Aquilion ONEの最新モデルである [Aquilion ONE / PRISM Edition に搭載されているディー プラーニングを応用した最新 CT の循環器 領域における有用性について述べる。

■新たな dual energy 技術 Spectral Imaging System

Spectral Imaging System 11, [Spectral Scan」と「Spectral Reconstruction」か ら構成される。また、医用画像処理ワー クステーション 「Vitrea | のソフトウエア である「Spectral Analysis」にて、さま

ざまな解析が可能である。

1. 1回転で心臓全体のdual energy 撮影が可能な Spectral Scan

Spectral Scan lt, rapid kV switchingと自動照射制御 (auto exposure control: AEC) の連動が可能であり、高 低2種類の管電圧 (dual energy) で撮 影したデータを、ほぼ同時相かつ対象部 位に適した線量で収集できる。「Spectral Volume Scan」は、1回転で160mmの 幅を dual energy 撮影することができ, 心電図同期撮影にも対応している。図1 は、心電図同期下で冠動脈を1心拍で 撮影した画像である。CTDIvol 6.0mGy の線量で、冠動脈内腔がブレなく明瞭 に描出できている。

2. 金属アーチファクト低減技術とも併用 可能な Spectral Reconstruction

Spectral Reconstructionは、ディー プラーニングを用いて設計された画像再 構成法である。Spectral Scan によって 得られたすべての投影データを活用し. 物質情報に基づく基準物質画像を作成

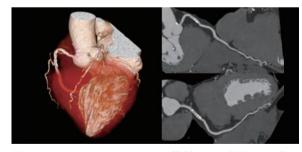

することができる。また、 金属アーチ ファクト低減技術の「Single Energy Metal Artifact Reduction (SEMAR) との併用も可能である。

図2は、心室頻拍の患者において、不 整脈発生起源の評価目的で遅延造影撮 影した画像である。SEMARを併用する ことにより、 リードからのアーチファク トが低減され、右室接合部に近接する 遅延造影を確認することができている (図2→)。

3. 高速ワークフローと診断への付加 情報を提供する Spectral Analysis

Spectral Analysis Lt, Spectral Reconstruction から得られた基準物質 画像を用いて解析するソフトウエアで. 医用画像処理ワークステーション Vitrea に搭載されている。仮想単色X線画像 などの作成や物質弁別など、検査目的 に応じた画像作成、解析、測定が可能 である。スキャンと連動して Vitreaへ画 像を転送し、プリセットしたレイアウト で解析結果を表示することができ、高速 ワークフローと併せて従来の診断画像に さらなる付加情報を提供する。

仮想単色 X 線画像は、35~200 keV までの画像を作成することができる。低

Spectral Volume Scan で撮影した冠動脈 CT 画像 (画像ご提供:藤田医科大学病院様)

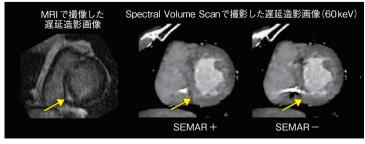


図2 Spectral Volume Scanで撮影した遅延造影画像 (SEMAR併用例) (画像ご提供: 杏林大学病院様)

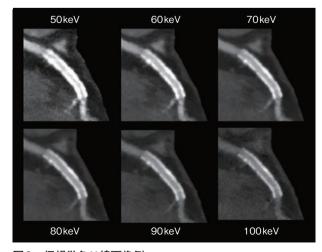


図3 仮想単色 X 線画像例 (画像ご提供:華岡青洲記念病院様)