

7 ISMRM 2022 における MRI 最新動向

ISMRM 2022 における 中枢神経領域のトピックス

鎌形 康司/内田 航/斎藤 勇哉/高林 海斗

順天堂大学大学院医学研究科放射線診断学講座

今回のISMRM年次大会は、ISMRM 初のハイブリッド開催で、オンサイト会場 はロンドンであった。現地開催は実に 3年ぶりで、新型コロナウイルス感染症(以 下. COVID-19) の影響が大きかったと 改めて感じた。筆者は Web 参加であった が、オンサイト会場は非常に盛況であっ たそうだ。また、今回のISMRMから、 Web 参加者のために Online Gather.town Pitch という新たな発表形式が採用された のが新鮮であった。Online Gather.town Pitchでは、参加者が自身のアバター(ロー ルプレイングゲームを彷彿とさせる8ビッ トキャラクター) を動かして、オンライン 上の仮想学会上を歩き回ることが可能で, ほかの参加者に近づくとリアルタイムで自 動的にビデオ通話をすることができる。実 際にその場で討論可能であるため、Web 参加者でも臨場感のある学会参加ができる。 自分の発表ブースも用意されており、実 際に興味を持った参加者が集まって討論 可能であった。さて、本稿では、中枢神 経領域で筆者が特に興味深く感じた演題 を中心に紹介する。

ISMRM 2022 における 中枢神経領域の演題

拡散MRIを用いた白質微細構造評価 に関しては、近年開発されたfixel based analysis (以下, FBA) 1) という 解析手法を用いた演題が多く. 注目さ れていた。拡散MRIを用いた白質微細 構造評価として、最も一般的な手法は 拡散テンソルイメージング (diffusion tensor imaging: DTI) であるが、DTI は1つのボクセル内に交差線維を含む場 合. それら神経線維東を別々のものとし て表現することができず、2つの神経線 維束の影響が混じったテンソルが推定さ れ、その部分の白質微細構造を正確に 評価することができない(図1)。また. DTI の拡散定量値では、 白質の特異的 な病理学的変化を表現するのが困難で ある。例えば、白質の異方性 (fractional anisotropy: FA) は軸索の密度や断 面積などさまざまな白質構造に依存して 変化するため、FA変化だけでは、これ らの影響を分離して評価することができ ない。そこで、FBAでは、拡散MRI信 号を constrained spherical deconvolution (CSD) という技術で、各ボクセ ルの線維配向分布 (fibre orientation distribution: FOD) を推定することで、 ボクセル内に存在する交差線維を分離 して評価する(図1)。さらに、FBAでは、 白質ボクセル内の神経線維束の密度 (fibre density: FD, 軸索変性) および

断面積(fibre-bundle cross-section: FC, 線維束の萎縮)を分離して、評価することができるため(図2), DTIより白質微細構造変化を詳細に評価できるという利点がある。

例えば、中国の鄭州大学のグループで は、COVID-19 に 感染して 1 年後 に 嗅 覚障害が残る被験者を対象に、FBAで 白質微細構造変化を評価した2)。その 結果, COVID-19に感染した被験者で は, 前視放線, 下前頭後頭束, 鉤状束, 小鉗子, 右下縦束, 左上縦束のFCお よびfibre density and bundle crosssection (FDC) が有意に上昇していた (\boxtimes 3, FWE-corrected P < 0.05) $_{\circ}$ COVID-19を対象としたほかの研究で は、感染から3か月後ではFAが低下し、 上記の白質路が損傷することが報告され ていたが、この研究ではその結果の逆で あり、演者らは感染から1年後になると 代償機能が働いて軸索内容積が大幅に 増加すると考察している。

多施設MRI調和技術に関する演題も 興味深かった。近年、多施設共同でサンプルサイズを増やし、統計力を上げる ことで、再現性良く信頼度の高い結果 を得ること、さらには、これまでとらえ ることのできなかった病態を検出するこ とを目的とした多施設共同研究が重要 視されている。一方で、多施設共同研究の場合、MRI装置の違いや撮像条件 の違いなどによる施設間差が問題視され ている。この施設間差の効果量は、変 化が微細と言われている精神疾患や軽