5. 超音波CTの原理と技術開発の現状

高木 東

唐 東京大学大学院工学系研究科

隆 (株) Lily MedTech

本稿では、乳がん検診用の新しい超音 波医療機器として大きな期待が寄せられ ている超音波 CT について、従来の超音 波(エコー)検査との比較を行い、超音波 CTの有する複数の撮像モードの説明を含 め、超音波 CT装置の特徴について説明 する。さらに、 最近の国内外の開発状況 について説明する。

超音波検査と超音波 CT

乳がん診断用超音波CTの標準的な タイプでは、図1に示すように、撮像デ バイスであるリング状のアレイを搭載し たベッド形状の装置上に被検者が伏臥 位となり、片方ずつ乳房を計測エリアに 挿入して. 順次三次元撮像を行う。測 定対象を取り囲むリングアレイで散乱波 や透過波に含まれる情報を取得して. 超音波散乱像, 音速分布像, 減衰率分 布像を撮像する。このリングアレイを上 下に動かすことで、連続する断層面で構 成される三次元の撮像を行っている。

以下, 従来の超音波検査と超音波 CTの比較として、主な相違点(①撮像 モード、②非接触な撮像、③読影の精 度管理) について述べる。

1. 撮像モード

表1に、それぞれの主な撮像モードを 記載した。従来の超音波検査では散乱 信号から情報を得ているが、 超音波 CT では透過波を用いた音速分布像や減衰 率分布像の取得も可能である。その詳 細は次節で述べ、ここでは散乱像の相 違. つまりBモード像(超音波検査)と リングエコー像(超音波CT)の相違を 述べる。

空間解像度は、波長と開口幅で定ま る。Bモード像においては、高周波化が 高解像度実現の手段であるが、高い周

波数では減衰も増大し、プローブ近傍と 対象の深部で周波数分布が異なり、画 質も異なる。

一方. リングエコー像では2~3MHz の低い周波数を用いて開口幅の拡大, すなわち対象を取り囲んだリングアレイ を用いた撮像により方位分解能を向上 している。画像中において、超音波送信 位置の近傍や深部といった区別がなく なり、 撮像領域内で均質な画質を得る ことが可能となる。また、Bモード像で の欠点である。 手前に音波伝搬を遮る 物質が存在した場合に、その奥の情報 が得られなくなる課題についても、多方 向から音波を送信するため、陰影の影響 を小さくすることが可能となる。

図1 リングアレイによる乳房撮像

表1 超音波検査と超音波 CT の相違点

	超音波検査	超音波CT
撮像モード	・B モード像 ・ドプラ血流像 ・造影像 ・エラストグラフィ	・リングエコー像 ・音速分布像 ・減衰率分布像
異なる時点での 撮像結果の比較 (画像追跡)	病変サイズなど一部の情報は比較可能であるが、接触 撮像であり、対象の変形を伴うため、比較できること が限られている。	非接触撮像であり、術前化学療法や良性病変の経過 観察などにおいて、画像の詳細な比較が可能。3D造 影検査が実現する可能性もある。
精度管理	読影の精度管理が困難(読影のみでの診断結果の検証 が難しい)	読影の精度管理が可能